3325 {
3327
3337
3338 dataAtPts->faceMaterialForceAtPts.resize(3, getGaussPts().size2(),
false);
3339 dataAtPts->normalPressureAtPts.resize(getGaussPts().size2(),
false);
3340 if (getNinTheLoop() == 0) {
3341 dataAtPts->faceMaterialForceAtPts.clear();
3343 }
3344 auto loop_size = getLoopSize();
3345 if (loop_size == 1) {
3346 auto numebered_fe_ptr = getSidePtrFE()->numeredEntFiniteElementPtr;
3347 auto pstatus = numebered_fe_ptr->getPStatus();
3348 if (pstatus & (PSTATUS_SHARED | PSTATUS_MULTISHARED)) {
3349 loop_size = 2;
3350 }
3351 }
3352
3354
3355 auto t_normal = getFTensor1NormalsAtGaussPts();
3356 auto t_T = getFTensor1FromMat<SPACE_DIM>(
3358 auto t_p =
3360 auto t_P = getFTensor2FromMat<SPACE_DIM, SPACE_DIM>(
dataAtPts->approxPAtPts);
3361 auto t_grad_u_gamma =
3362 getFTensor2FromMat<SPACE_DIM, SPACE_DIM>(
dataAtPts->gradHybridDispAtPts);
3363 auto t_strain =
3364 getFTensor2SymmetricFromMat<SPACE_DIM>(
dataAtPts->logStretchTensorAtPts);
3365 auto t_omega = getFTensor1FromMat<3>(
dataAtPts->rotAxisAtPts);
3366
3373
3374 auto next = [&]() {
3375 ++t_normal;
3376 ++t_P;
3377 ++t_omega;
3378 ++t_grad_u_gamma;
3379 ++t_strain;
3380 ++t_T;
3381 ++t_p;
3382 };
3383
3386 for (auto gg = 0; gg != getGaussPts().size2(); ++gg) {
3387 t_N(
I) = t_normal(
I);
3389
3392
3393 t_grad_u(
i,
j) = t_R(
i,
j) + t_strain(
i,
j);
3395 t_N(
J) * (t_grad_u(
i,
I) * t_P(
i,
J)) / loop_size;
3396
3397
3398 t_T(
I) -= t_N(
I) * ((t_strain(
i,
K) * t_P(
i,
K)) / 2.) / loop_size;
3399
3400 t_p += t_N(
I) * (t_N(
J) * (t_grad_u_gamma(
i,
I) * t_P(
i,
J))) / loop_size;
3401
3402 next();
3403 }
3404 break;
3406 for (auto gg = 0; gg != getGaussPts().size2(); ++gg) {
3407 t_N(
I) = t_normal(
I);
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3421 (t_grad_u_gamma(
i,
j) - t_grad_u_gamma(
j,
i)) / 2. +
3423
3424 t_T(
I) += t_N(
J) * (t_grad_u(
i,
I) * t_P(
i,
J)) / loop_size;
3425
3426
3427 t_T(
I) -= t_N(
I) * ((t_strain(
i,
K) * t_P(
i,
K)) / 2.) / loop_size;
3428
3429
3430 t_p += t_N(
I) * (t_N(
J) * (t_grad_u_gamma(
i,
I) * t_P(
i,
J))) / loop_size;
3431
3432 next();
3433 }
3434 break;
3435
3436 default:
3438 "Grffith energy release "
3439 "selector not implemented");
3440 };
3441
3442#ifndef NDEBUG
3443 auto side_fe_ptr = getSidePtrFE();
3444 auto side_fe_mi_ptr = side_fe_ptr->numeredEntFiniteElementPtr;
3445 auto pstatus = side_fe_mi_ptr->getPStatus();
3446 if (pstatus) {
3447 auto owner = side_fe_mi_ptr->getOwnerProc();
3449 << "OpFaceSideMaterialForce: owner proc is not 0, owner proc: " << owner
3450 << " " << getPtrFE()->mField.get_comm_rank() << " n in the loop "
3451 << getNinTheLoop() << " loop size " << getLoopSize();
3452 }
3453#endif
3454
3456}
#define FTENSOR_INDEX(DIM, I)
Kronecker Delta class symmetric.
Tensor1< T, Tensor_Dim > normalize()
#define MoFEMFunctionBegin
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
#define MoFEMFunctionReturn(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define MOFEM_LOG(channel, severity)
Log.
FTensor::Index< 'i', SPACE_DIM > i
const double n
refractive index of diffusive medium
FTensor::Index< 'J', DIM1 > J
FTensor::Index< 'l', 3 > l
FTensor::Index< 'j', 3 > j
FTensor::Index< 'k', 3 > k
constexpr std::enable_if<(Dim0<=2 &&Dim1<=2), Tensor2_Expr< Levi_Civita< T >, T, Dim0, Dim1, i, j > >::type levi_civita(const Index< i, Dim0 > &, const Index< j, Dim1 > &)
levi_civita functions to make for easy adhoc use
static auto getFTensor0FromVec(ublas::vector< T, A > &data)
Get tensor rank 0 (scalar) form data vector.
constexpr IntegrationType I
FTensor::Index< 'm', 3 > m
static enum EnergyReleaseSelector energyReleaseSelector